
International Journal of Theoretical Physics, Vol. 32, No. 1, 1993 

Lifted Transformations on the Tangent Bundle, 
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We define affine transport lifts on the tangent bundle by associating a transport 
rule for tangent vectors with a vector field on the base manifold. Our aim is to 
develop tools for the study of kinetic/dynamic symmetries in particle motion. 
The new lift unifies and generalizes all the various existing lifted vector fields, 
with clear geometric interpretations. In particular, this includes the important 
but little-known "matter symmetries" of relativistic kinetic theory. We find the 
affine dynamical symmetries of general relativistic charged particle motion, and 
we compare this to previous results and to the alternative concept of "matter 
symmetry." 

1. I N T R O D U C T I O N  

Vector fields on the tangent bundle TM, arising as the lifts of  vectors 
or of  transformations on the base space M, have been defined and applied 
in differential geometry, Lagrangian mechanics, and relativity; for example, 
the complete (natural or Lie), horizontal and vertical lifts (Yano and 
Ishihara, 1973; Crampin,  1983; Prince and Crampin,  1984; Crampin and 
Pirani, 1986), the projective and conformal lifts of  Iwai (1977), and the 
mat ter  symmetries of  Berezdivin and Sachs (1973) (Oliver and Davis, t 979). 

Our aim is to find a more general way of lifting from M to TM than 
the usual definitions that involve only the vector field on M, and possibly 
the connection on M. In fact, the matter  symmetries of  Berezdivin and Sachs 
(1973) are a step in this direction. We generalize their concept in a way that 
gives a clear geometric foundation to all the lifts previously defined, and to 
new lifts which can be defined. While the differences among the known lifts 
are as important  as their common features, a unified approach can give new 
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insights into kinetic and dynamic symmetries of particle motion. Our main 
interest is in applications to general relativistic kinetic theory. However, the 
concepts and formalism are more widely applicable. 

The main idea is to associate a transport rule for tangent vectors with 
a vector field on M. This defines a vector field on TM--the transport lift. 
The class of affine transport lifts (ATLs) generalizes all previously defined 
lifts in a unified and geometrical way. We find conditions under which ATLs 
are dynamical symmetries for particle trajectories in (semi-) Riemannian 
manifolds, thus throwing new light on earlier results. 

In Section 2 we give a brief and simplified summary of the relevant 
differential geometry of the manifold and tangent bundle. In Section 3 we 
define the transport rule for tangent vectors on M and the corresponding 
definition of a transport lift on TM. Affine transport lifts are then defined 
and their properties are discussed. Previous lifts are geometrically interpreted 
as special cases of ATLs. Particular attention is focused on matter sym- 
metries. In Section 4 we find the conditions under which ATL s are dynamical 
symmetries, generalizing previous results. The special case of dynamical 
matter symmetries is also discussed. 

2. LOCAL GEOMETRY OF THE TANGENT BUNDLE 

We give a brief summary of the relevant local differential geometry of 
the tangent bundle assuming only a knowledge of basic tensor analysis on 
manifolds. For further details, see, for example, Crampin and Pirani (1986) 
or Yano and Ishihara (1973). Consider a (semi-) Riemannian n-manifold 
(M, g) with local coordinates x a and metric connection (Christoffel symbols) 

a _ _  I a d  F bc---~g (gdb,~+gca, b--gb~,a) 

The tangent bundle T M  is the union of all tangent spaces (fibers) TxM, 
x~M.  In relativistic kinetic theory (RKT) the phase space arises out of T M  
by restriction to future-directed, nonspacelike tangent vectors (Maartens 
and Maharaj, 1985). 

Local coordinates x ~ on M induce local coordinates i t= (x'~,p b) on TM, 
where pa are the coordinate components of the vector p: 

0 p =pa _ _  
Ox a 

More precisely, ~z= (xao re, dxbo v), where zr is the projection to the base 
manifold [n( r ) = x] and v( ~ ) =p. Coordinate transformations x" ~ xa!(x ") 
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induce the transformation 

~l....~ ~l'=(xa'(xa), Oxb" b~ (1) 

on TM. 
Any smooth vector field Z = d/dcr on T M  can be expressed locally as 

~x ~ 0 (2a) Z = Z  I = a " ( x , p )  + p a ( x , p )  OP a 

where 

dxa f l" (x ,p)  -dp~ (2b) 
a~(x 'P)= d----~' d~ 

give the integral curves ~r(o-) of Z. 
The coordinate transformation (1) induces the following transformation 

of  the basis vector fields 0/041: 

_ _  02X a" 0 _Ox a' 0 ~ pb 0 (3a) 
Ox" Ox a Ox ~' Ox ~ Ox b Op ~ 

O Ox" 'O  

Op" Ox~ Op .' 
(3b) 

which implies 

aa'= Oxa" t~a a" --* (4a) 
t3x ~ 

a '  
., Ox 3~ O2x "" 

fl --* fl =-~X ~ "~---pbaaOX a OX b (4b)  

Thus, the fl" do not transform like vector components on M, i.e., the compo- 
nents Z r= (a", fib) in the basis {O/Ox", O/Op b} are not a covariant splitting 
of  Z. Using (3), (4), and the Fabc transformation law, we arrive at a covariant 
splitting of  vector components via the anholonomic "connection basis" 
{Ha, lib} of  horizontal and vertical vector fields (Crampin and Pirani, 1986): 

Ha = - Fbc~p ~ - -  V~ =- (5) 
Ox ~ Opt' ~p~ 
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By (3) and the transformation law for the connection, these obey the trans- 
formation law 

OX a Ox ~ 
H d = ~ x ~ , H o ,  V o , = ~ x  a, V. (6) 

Then we find that 

Z = b~ p)Ho + c~ p)  Vo = b"'(x', ' o' , p ) H o , + c  ( x ,p ' )Va ,  

where, by (1) and (6), 

b"= Ox---~ c ~  Ox'~ c ~ 
Ox o, b ~ Ox o, 

Thus, the connection basis vectors and the components of vector fields in 
this basis all transform like vector fields on M. The Lie brackets of the basis 
vectors are 

The vector field 

[ V,,, Vb] = 0 ( 7 )  

[Ha, Vb] = r'cob Vc (8) 

R a cV [Ha, nb]=- -  eobP a (9) 

F = p ~  (10a) 

has, by (2) and (5), integral curves ~I(v) on T M  which are the natural lifts 
of geodesics x~ on M: 

v ~ ~'(v) = (x~ :r ~ ~ 1 7 6  

D2x  ~ 
=.#o + FOb~jCb~ = 0 

dv 2 

Then F is called the geodesic spray. In RKT, F is the Liouville vector field, 
since the Liouville (Vlasov) equation is 

F f = 0  (11) 

where f = f ( x , p )  is the distribution function for uncharged particles 
(Maartens and Maharaj, 1985). 

In the case of charged particles (charge e), the Liouville vector field 
generalizes to 

F(e) = F + e F a b p  b Ira (10b) 
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where F is the electromagnetic field tensor. This follows since, by (2), (5), 
and (10), the integral curves of F(e~ are the lifts of charged particle trajectories 
(Stephani, 1982): 

p~ - dx  ~ D2x  a 
d v  ' d o  2 - e F " b p b  

where v= (proper time)/(rest mass). Then the Liouville equation (11) gen- 
eralizes to the charged particle case: 

F(e) f =  0 

Note that F(e), and in particular F = F(0), is always tangent to the hypersur- 
faces defined by 

g,~b( x ) p a p  b = - - m  2 

This follows from a general result for scalars on T M  that are defined by 
symmetric tensors on M: for 

q = Q,,,,,2_.,,r(x)pa~pa2...p,,r 

we have, by (10) (with parentheses denoting symmetrization) 

F(e)q= Q(a,~2 ..... .b~p~,p~2. . . pa~pb+erF~,,Qa2 . . . . .  )bpa lpa2 .  . .par (12) 

which reduces to the well-known result when e=0. Thus, in particular, 
(12) implies 

F(e)m 2 = 0 

since g~b;c=0=F(~b). Also, from (12), we get 

Fq=0 r Q.,~2 ..... is a rank-r Killing tensor 

In particular, Killing vector fields define linear first integrals of geodesic 
motion : 

y =  Yo(x)p  ~, Y(a;b~=O = r y = 0  

A Newtonian dynamical system (Iwai, 1977) on a Riemannian manifold is 
defined by a force vector field f",  which determines the Newtonian trajec- 
tories via 

D p  o 

- H ( x )  
dt 
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The natural lifts t---) (xO(t), ~b(t)) define the Newtonian dynamical vector 
field on TM: 

r=p"n.+f"V,, 

In fact this dynamical field also applies to 
velocity-independent four-force f~ 

For a vector field 

0 
Y= Ya(x) - -  

ax a 

(13) 

relativistic motion under a 

(ii) Vertical lift: 

(iii) Complete lift: 

Y ~  ~'= Y~(x)H,, (14) 

r--, ~= r"(x)Vo (15) 

y.... ~r.= ya(x)na+ y,,b(x)pbV,, (16) 

(iv) Iwai's lift: 

Y ~  Y*= Y ' -2g(x )p"V , ,  (17) 

Here g is proportional to Y";a in (17). We shall give a geometric explanation 
of these lifts in the next section. 

We can also define the vertical lift of a rank-2 tensor field (Yano and 
Ishihara, 1973): 

A ---) .4 = A ab(x)pb Va (I 8) 

with a special case being the Euler vector field (Crampin and Pirani, 1986) 

A=$=p"V~ (19) 

Matter symmetries in RKT have been defined by Berezdivin and Sachs 
(1973) in terms of a vector field Yand a skew rank-2 tensor field A on M: 

(Y,  A)  ~ Y"(x)Ha+A~ A(,b)=0 (20) 

We shall explain the meaning of (20) in the next section. 
To end this brief summary, we recall the definition of a dynamical 

symmetry (Crampin, 1983; Prince and Crampin, 1984). A dynamical system 
on M is defined by a congruence of trajectories on TM. The tangent vector 
field to these trajectories is the dynamical vector field F. In the case of 

on M, various lifted vector fields have been defined on TM:  
(i) Horizontal lift: 
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geodesic trajectories (free-fall particle motion), F is given by (lOa); for 
relativistic charged particle motion, by (lOb); and for a Newtonian system, 
by (13). 

A dynamical symmetry is a vector field 2; that maps trajectories into 
trajectories with possibly rescaled tangent vector field. Thus (exp eXez)F is 
parallel to F, and so 

5e~F = [Z, F ] = - g F  (21) 

for some gt(x,p), is the condition for Z to be a dynamical symmetry. The 
nature of the rescaling depends on V(x,p). If  gt = V(x), then the rescaling 
is constant on each fiber, Tx M. If ~ = 0, then there is no rescaling and 2; is 
said to be a Lie symmetry on TM. 

3. TRANSPORT LIFTS 

Let Y= d/dcr be a vector field on M and A a smooth local rule governing 
the transport of tangent vectors along the integral curves of Y. Thus any u ~ 
at xa(ty) is mapped under A to u '~ at x'~176 e): 

u '~ = A~ u; e) 

This defines curves (x~ pb(o')) in TM, with 

apd ~ dx~  y~ - Z~ p) (22a) 
dcy d~ 

where the generator of A is (Eisenhart, 1961) 

;t~ p) = [0A"(x, p; e)/0e]~=0 (22b) 

We can define a vector field on TM with integral curves (x~ p~(o-)) given 
by (22). We call this the transport lift on TM of the vector field Y and of 
the transport rule A along Y. By (2), the transport lift is focally given by 

~x  ~ a (23) (Y, A ) ~  Y~ + Z~ p) Op----g 

where Z~ p) is defined by (22b). [By (4b), Za does not  transform covari- 
antly, unless Y= 0.] Note that (23) preserves the fibers of TM, i.e., under 
the flow of (23), TxM is mapped to T,:,M. This property is also reflected in 
the following. If  ~b, is the flow of Y on M and O~ is the flow of (23) on TM, 
then 
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The transport lift (23) combines the point transformations generated by Y 
on M with the tangent vector transformations generated by A on M. In fact, 
the transformations generated by (23) on T M  are 

�9 ~: (x, p) ~ ([exp eY]x ,  [exp 8A.]p) (24) 

A covariant splitting of (23) is given by the connection basis (5) : 

( ]1, A) ~ Y"(x)H~ + [X~(x, p )  + Fabc(x)pby~(x)] Va 

[Note that by (4b), the vertical component transforms covariantly.] This 
covariant form makes it clear that, in general, the transport rule A along Y 
is not defined purely by tensor fields on M. However, this is the case for an 
affine transport rule, for which 

A~(x, u; ~)=f~b(x;  e ) u b + K a ( x ;  e) 

Thus, the affine transport lift (ATE) of (Y, A) on M has the form 

y(A.k) = y a ( x ) H  ~ + [A.b(X)pb + k.(x)] V. (25a) 

where 

and 

A ~ = co ~b(X) + Fabc(X) YC(x) (25b) 

In this case we have 

coab(X) ~- [0~"~ab(X; 8)/OE]~'=O 

k~ = [0K~(x; e)/Oe]~=o 

(25c) 

(25d) 

,~"(x, p) = co"b(x)p b + ka(x)  

so that by (4b) we get the transformation laws 

ka'= gxa' k ~ 
Ox ~ 
OX a' OX b 

~ a'b, - -  
Ox ~ Ox b' 

Ox ~ d2x~ 
co a b + - -  y,, 

Ox b' Ox" Ox b 

It follows that k is a vector field on M, whereas co is not a tensor field unless 
Y= 0. Furthermore, A as defined by (25b) is a tensor field, and the vertical 
component in (25a) therefore transforms covariantly, as it must. The trans- 
port rule A is thus covariantly determined by A and k. Note that by (25b), 
A is not independent of Y. 
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By (25) and (2), the integral curves ~(o-) of  y(A,k) satisfy 

d x  a 

- Y"(x)  (26a) 
dcr 

d a 

T = co~b(x)p b + k"(x)  = [A ~b(X) -- F"bc(X) Y~(x)]p b + k~(x) 
dtx 

(26b) 

We can rewrite (26b) as 

Dp ~ _ Aabp b + k a 
dcr 

which shows that A and k determine the rate of  change of  tangent vectors 
under A relative to parallel transport. In the case k = 0, we get a particularly 
simple interpretation of  A" 

A a b u b = V y U  a o r  A ( u ) = V ) , u  (27) 

for all u along Y. This equation is important for the geometric construction 
of  lifts (see below). 

Note  that by (14), (15), (18), and (25) we can write the ATL as 
�9 _ A A 

(Y, A ) ~  y(A,k)= Y + A + k  

However, this obscures the fact that A is tied to Y via (25b). The class of 
linear transport lifts (LTLs) arises as the special case k a= 0, and we write 

y(A) = y(A,0) 

LTLs encompass all previously defined lifts apart from the vertical lift (15). 
Now from (25a) we get 

a y(A,k)+ flZ(B,t)= (a Y+  flZ)(~A+ t~s,~ + t31) (28) 

for any scalars a, fl on M. (Note again that A and B depend, respectively, 
on Y and Z. In particular, this means that in general the taking of the affine 
transport lift is not a linear process.) Thus the ATLs form a linear subspace. 

Furthermore, (7)-(9) give 

[ y(A,k), Z (s J)] = [ Y, Z]aH~ + (Bab;e y c _  A~b;cZC 

+ Bac A c b - -  A "~ B~b -- R ~b~d Y cZ d)p b V, 

+ (/";b yb _ kabZb__ A,~blb + B~bk b) Va 

which may be rewritten as 

[ y(A,k), Z(n,t)] = [ y, z](C,m) (29a) 
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where 

C=  V r B -  VzA - [A, B] - R( Y, Z )  (29b) 

m = V r l -  V z k -  A(l) + B(k) (29c) 

C is a rank-2 tensor field on M and R(Y, Z )  is the curvature operator 
(Crampin and Pirani, 1986): 

[R( Y, Z)X] a = R a b c d X  b YcZa 

for all X. By (28) and (29), the ATLs form a Lie algebra. The LTLs are a 
subalgebra (but not an ideal). 

The class of ATLs includes all of the lifts previously defined in Section 
2, as we shall now show. 

Examples of LTLs 

Before limiting ourselves to the linear case, we regain the vertical lift of 
a vector field. In order to get Z, we choose Ya=O, A"b=O, k~=Z" in (25). 
Thus, 

= 0 (~ (30) 

Now we limit ourselves to the class of LTLs given by k ~= 0: y(A)= y(A,o). 
By (25a), if Y= 0, we regain the vertical lift (18) of the rank-2 tensor 

field A along with its special case the Euler vector field (19) : 

0 (A) = A abpb Va = A (31 a) 

0 (~) =p~ V~ = A (3 lb) 

By (24), 0 (A) generates a GL(n) transformation on each fiber: 

p" ~p'"= (e~A)abph 

Thus on each fiber TxM, A~b(X) is an element of the Lie algebra gl (n). By 
restricting A"b(X) to a particular Lie algebra g, we see that 0 (A) generates 
gauge transformations of the corresponding Lie group G. 

In order to regain the horizontal lift (14) of a vector field, we require 
that the transport rule A be parallel transport along Y: 

V r u = 0  

for all u. By (27) this implies A =0. Then, by (25a) and (14), 

~ =  y(0) (32) 
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Thus, the horizonal lift Y is given clear geometric interpretation as the 
lifted vector field along whose integral curves arbitrary vectors are parallel 
transported. 

Now we show that when the transport rule A is chosen to be Lie 
transport ("dragging along"), we regain the complete lift (16). Lie transport 
along Y implies 

~(PyU--- V y U -  V u Y = O  

for all u, which by (27) implies 

A ab U b = UbVb Yo 

for all u ~ Thus, .4 = V Y, and by (25a) 

~=  y(Vr) (33) 

Now by (26a) and (26b), the integral curves of Y are given by 

dx~ dP a a b 
- Y " ,  - - =  Y ,bP 

dcr dcr 

Thus 

and so the flow of Y-is 

~a __ Ox~a b 
P - - ~ x b P  

(x, p) -+ (~x ,  ~ , p )  

where ~b~ is the flow of Y. This property of Y is dearly consistent with the 
geometric interpretation in terms of Lie transport. It also means that the 
natural way of defining invariance of a tensor field Z on T M  under the point 
transformations generated by Y on M is 

~r 

[See Maartens and Maharaj (1985) for the case where Z is the distribution 
function in RKT.] Finally, we note that an important difference between the 
horizontal and complete lifts is obscured by this unified approach. The 
occurrence of Y~,b in Y but not in Y reflects the fact that Lie transport, 
unlike parallel transport, is only defined for vector fields. 

Thus, we are able to regain in a unified and geometric way the standard 
lifts of vectors and rank-2 tensors via the concept of ATLs. Using the general 
Lie bracket relation (29), we can also regain the Lie brackets (Yano and 
Ishihara, 1973; Crampin, 1983 ; Prince and Crampin, 1984; Crampin and 
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Pirani, 1986) among the three standard vector lifts: 

[Y, Z ] = [ Y ,  Z ] - R ( Y ,  Z) 

[r, Zl=V~Z 

[f; 2 l=[ r ,  Zl+ S(r, z)  
A 

It, Zl=O 

[r, Zl=[r ,  z] 
[r,  2 j  = 

where the operator S(Y, Z )  is defined by 

[S( r, z ) x y  = (s YcX ~ 

for all X ~. Note that on a curved manifold the sets of vertical and complete 
lifts each form a Lie algebra, but the horizontal lifts do not. By (29), the 
vertical lifts form an ideal in the algebra of  ATLs, but the complete lifts do 
not. 

We now show that the LTLs also include the matter symmetry vector 
fields of RKT. Berezdivin and Sachs (1973) define a matter symmetry as a 
vector field on TM that leaves the distribution function f unchanged. This 
vector field connects points in TM where the distribution of matter is the 
same. Geometrically, this implies that an observer at x with local Lorentz 
frame F will measure f on the tangent fiber TxM to be the same as an 
observer at x' with Lorentz frame F '  measuring f '  on Tx, M. Thus, matter 
symmetries arise in the class of LTLs out of the requirement that the trans- 
port rule A be Lorentz transport along Y. Thus, any vector transforms 
according to a representation of the Lorentz group SO(I, 3) along Y. Given 
an orthonormal tetrad {Ea}, we have 

Ea" Eb=rlab-~diag(--l, 1, 1, 1) 

and the tetrad components of the connection are 

rabc=Ea �9 V e E a = - E b  " V c E a = - F b a c  (34) 

Now the tetrad components of any vector transform as 

u t a = A a ( / / ,  x ;  ,F.) = ~'~ab(X ; ,F.)U b 

where f~eSO(1, 3). Thus ~ preserves r/: 

~'~ac ~ab ~"lbd =rlcd 
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Differentiating and noting that ~"b(x; 0) = 5~b, we get 

O~(ab) = 0 

where co is defined by (25c). Thus, by (25b) and (34), we have 

A(,b) =0 (35) 

which is the condition for y(A) to be a matter symmetry (or "Lorentz lift"). 
[Berezdivin and Sachs (1973) derive the condition (35) by requiring that the 
matter symmetry leaves m z= --pap, invariant.] The matter symmetries form 
a Lie algebra, since by (29c), C is skew if A and B are. 

Lorentz transport generalizes to (semi-) Riemannian manifolds of any 
dimension n and signature n - p ,  where vectors transform according to a 
representation of SO(p, n - p )  under A. Then in an orthonormal basis {E,} 

E, .  Eb=P~b--diag(--1 . . . . .  --1, 1 . . . . .  1) 

p n - p  

and DESO(p, n - p )  preserves p, leading to skew-symmetry of A as before: 

~'~ac l..lab~'~bd---~ ].led ~ A(,b)=0 

We can define a new lift as a special case of the Lorentz lift. This occurs 
when the transport rule A is Fermi-Walker transport along Y. Thus, the 
Fermi-Walker derivative (Stephani, 1982) of any u is zero: 

~ r u = - V r u - ( u  �9 V r Y ) + ( u "  Y)VrY=O 

By (27) this implies 

so that 

Aab = y~yb;cy c -  y~ b 

Aab = ( Y ^  Vr Y),b = --Aba 

Then by (25a) we can define the Fermi-Walker lift Y* of Y as the LTL 

y , =  y(r^vyr) (36) 

Iwai's lift (17) arises as the LTL which is the lift of conformal Lie transport. 
However, Iwai defines his lift for Y a projective collineation or conformal 
Killing vector, whereas the class of ATLs generalizes this to any Y. If  the 
transport rule A is conformal Lie transport, then 

5@u = -2Vu  

for all u and some scalar field ~(x) on M. Then by (27) 

A a b  = y a ; b  - -  2~t3"b 
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and by (25a) Iwai's lift generalized to any Y is the LTL 

y , =  y~Vr-2v, a) (37) 

The generalized Iwai lifts form a Lie algebra, since (37) and (29) imply 

[Y*, Z*]=[Y, Z]* where Vtr, z l = Z # r V z - S e z V r  

with the aid of the Ricci identity and the symmetries of R. [This generalizes 
Iwai's (1977) result to the ease of arbitrary Y, Z.] 

We have seen that not only the standard lifts ~', Y, ~', but also the 
generalizations due to Iwai and to Berezdivin and Sachs, are all contained 
within the class of ATLs. Furthermore, all are given clear geometrical inter- 
pretations through the concept of ATLs. 

4. DYNAMICAL AND MATTER SYMMETRIES 

In searching for a dynamical symmetry Z [obeying the condition (21)], 
it is usually assumed that X arises purely from a vector field on the base 
manifold M for example, Z = Y or Y*. The ATLs open up the possibility 
of generalizing dynamical symmetries to the case where not only a vector 
field, but also a transport law for tangent vectors, is used to generate trans- 
formations of the dynamical trajectories. In the case of affine transport 
laws, this means looking at the ATLs. Unfortunately, as we shall show, the 
dynamical symmetry condition reduces the ATL to a vector lift--in fact, to 
Y*. At least this gives a foundation to the ad hoc ansatz of Iwai. 

We examine now the conditions under which an ATL is a dynamical 
symmetry. By (21) this gives 

where 

[ y(A,~), F ] = - v F  (38a) 

I ~ =paHa + eFabp b Va +f"  V,, (38b) 

incorporates the dynamical fields (10a), (10b), and (13). Then (25a) and 
(38) imply [using (7)-(9)] 

( A a b  - -  y a ; b ) p b  + k a = - I l t p  a (39a) 

a c d a c a b (eF"b;cYC+[F, A]% + R bcaP Y - A  b;cP - k  ;b)P 

+ eFabk b +fa;b yb _ AObfb = _eu/F,opb_ v/f~ (39b) 
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From (39a), k ~ = 0, which is the restriction to the class of LTLs. A further 
implication of (39a) is that 

Aab = Y a ; b -  Iltgab (40) 

From (40) it is clear that ~, is restricted to qt = qt(x). Using (40) in (39b), 
we get 

, ~ r F a b c ~  y a  __ a d _  a ;be R bodY --5 (b~',c) (41a) 

~erF~b = -- vtF"0 (41 b) 

s a = - 2 ~ ' f  a (41c) 

By (41a), Y is a projective collineation vector (Crampin, 1983; Prince and 
Crampin, 1984), and together with (40), this means that the ATL is reduced 
to Iwai's projective lift (37) (although note that Iwai did not consider 
charged particles) : 

[y(A,k) F] = - ~ t F  ~ y(A,k)= y(Vr-v~,0)= y* 

Thus we see that any affinely based dynamical symmetry arises from a 
projective collineation vector. Furthermore, the ansatz introduced by Iwai 
in fact arises as the condition for an ATL to be a dynamical symmetry. Any 
attempt to generalize Iwai's ansatz would require a fully nonlinear transport 
rule A. 

The conformal transformation o f f  under Y in (41c) was also given 
by Iwai. Our generalization to include relativistic charged particle motion 
produces (41b), which is a conformal transformation of the electromagnetic 
field tensor F% under Y. [In fact, results similar to (41a)-(41c) appear to 
have first been found not by Iwai, but by Katzin and Levine (1974), without 
reference to the tangent bundle and liftings. Katzin and Levine, like Iwai, 
considered only symmetries generated by a base vector field.] 

Finally, we note that in RKT, if a matter symmetry is also a dynamical 
symmetry (i.e., an invariance mapping of trajectories as well as of the distri- 
bution function), then by (35) and (40) we have 

Y(~;b) = Iltgab 

which, together with (41a), implies 

~t,,=0 

Thus, a matter symmetry is simultaneously a dynamical symmetry only if Y 
is a homothetic Killing vector and 

A = d Y  
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Furthermore, in the case of charged particles, F~ must map homothetically 
under Y, by (41b). These are stringent restrictions, and show that matter 
symmetries (distribution-based) are in general very different from dynamical 
symmetries (trajectory-based). 

5. CONCLUSION 

By generalizing the concept of  lifting point transformations to include 
tangent vector transport, we have defined the class of ATLs on the tangent 
bundle. The ATLs include all previous lifts, thus unifying many results into 
a single framework, with clear geometric interpretations. The generalization 
introduced by the ATL concept includes in particular the matter symmetries 
of RKT and the lifts introduced ad hoc by Iwai. The projective lift of Iwai 
is shown to be the unique ATL which is a dynamical symmetry on (semi-) 
Riemannian manifolds. The matter symmetries provide a very different con- 
cept of invariance, coinciding with dynamical symmetries only in the special 
case that Y is homothetic and A = dY. The study of matter symmetries in 
their own right, and in particular their relation to geometric symmetries, is 
taken up in the second paper (Maartens and Taylor, in preparation) of this 
research program. 

Applications of the ATL formalism beyond RKT are possible. It may 
also be applicable to the study of symmetries in gauge field theories, since 
yeA) generates gauge transformations along Y i f A  is in the gauge Lie algebra 
at each point. The formalism could also be generalized to other fiber bundles. 
For example, an ATL on the (~) tensor bundle T i M  arises when A trans- 
forms (r) tensors along Y. With modifications, the formalism would also 
carry through to the tangent bundle of a manifold with torsion. 
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